Team 18: Planthanum

Problem Statement

Fossil fuels are harmful to the environment, and current methods of hydrogen fuel production lack the accessibility to be utilized by members of underdeveloped communities. Hydrogen gas (H_2) can be produced cleanly and efficiently by splitting water (H_2O) into both H_2 and O_2 via electrolysis.

Project Description

Team 18 designed a process to produce lanthanum (III) iron oxide (LaFeO₃). LaFeO₃ is a photocatalyst used for solar generation of H_2 , and its nanoparticles are used as a novel alternative for semiconductors to coat photoelectrodes. Current semiconductors used in photoelectrodes need "external bias," which means they need DC voltage to operate. Photoelectrodes coated in the LaFeO₃ photocatalyst do not require any external bias!

- Pawar, Govinder S., and Asif A. Tahir. "Unbiased Spontaneous Solar Fuel Production Using Stable lafeo3 Photoelectrode." *Nature* News, Nature Publishing Group, 22 Feb. 2018, https://www.nature.com/articles/s41598-018-21821-z.
- Suslova, E. V., et al. "Lanthanum Alkoxides. Crystal Structure of [la6(µ6-Cl)(µ3-OPR I)2(µ-OPR I)9(OPR I)6]." Russian Journal of Inorganic Chemistry, Pleiades Publishing, 24 Oct. 2015, https://link.springer.com/article/10.1134%2FS0036023615110182

Joshua Broekhuizen, Michael Rettstatt, and Plinio Rosales Lopez, Calvin University, Grand Rapids, Michigan

Figure 1. Crystal Structure of LaFeO₃.

From top to bottom:

- Michael Rettstatt (ChE)
- Plinio Rosales Lopez (ChE)
- Josh Broekhuizen (ChE)
- \bullet
- Industrial Consultant: Randy Elenbaas (not pictured)

 $LaCl_3 + 3C_2H_5OH + \stackrel{Bu_4 \text{ NBr}}{\iff} La(OC_2H_5)_2 + 3HCl$ **Top Section Chemistry:**

Etherification of Lanthanum Salt. Lanthanum chloride is combined with ethanol to create lanthanum ethoxide with a hydrochloric acid waste stream.

Bottom Section Chemistry: $Fe(NO_3)_3 + 3NH_4OH + \bigoplus^{MeOH} Fe(OH)_3 + 3NH_4^+ + 3NO_3^-$

Precipitation of Iron Hydroxide. Iron nitrate is combined with ammonium hydroxide to precipitate iron hydroxide, which is washed and filtered out of the wastewater stream.

LaFeO₃ Reactor Chemistry: $La(OC_2H_5)_3 + Fe(OH)_3 \stackrel{TFA,MeOH}{\longleftrightarrow} LaFeO_3 + 3(C_2H_5OH)$

Annealing of Lanthanum Iron Oxide. The solid powders are mixed with TFA and annealed at 550°C for 3 hours to produce lanthanum iron oxide.

Figure 3: Process Flow Diagram

Team Members

Advisor: Dr. Andrew Wilson (not pictured)

Process

